A Comparison of Tests for Embeddings
نویسندگان
چکیده
It is possible to compare results for the classical tests for embeddings of chaotic data with the results of a newly proposed test. The classical tests, which depend on real numbers (fractal dimensions, Lyapunov exponents) averaged over an attractor, are compared with a topological test that depends on integers. The comparison can only be done for mappings into three dimensions. We find that the classical tests fail to predict when a mapping is an embedding and when it is not. We point out the reasons for this failure, which are not restricted to three dimensions.
منابع مشابه
Labeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملThe Comparison Between Goodness of Fit Tests for Copula
Copula functions as a model can show the relationship between variables. Appropriate copula function for a specific application is a function that shows the dependency between data in a best way. Goodness of fit tests theoretically are the best way in selection of copula function. Different ways of goodness of fit for copula exist. In this paper we will examine the goodness of fit test...
متن کاملSub-Word Similarity based Search for Embeddings: Inducing Rare-Word Embeddings for Word Similarity Tasks and Language Modelling
Training good word embeddings requires large amounts of data. Out-of-vocabulary words will still be encountered at test-time, leaving these words without embeddings. To overcome this lack of embeddings for rare words, existing methods leverage morphological features to generate embeddings. While the existing methods use computationally-intensive rule-based (Soricut and Och, 2015) or tool-based ...
متن کاملTailoring Word Embeddings for Bilexical Predictions: An Experimental Comparison
We investigate the problem of inducing word embeddings that are tailored for a particular bilexical relation. Our learning algorithm takes an existing lexical vector space and compresses it such that the resulting word embeddings are good predictors for a target bilexical relation. In experiments we show that task-specific embeddings can benefit both the quality and efficiency in lexical predic...
متن کاملOn the Ultramean Construction
We use the ultramean construction to prove linear compactness theorem. We also extend the Rudin-Keisler ordering to maximal probability charges and characterize it by embeddings of power ultrameans.
متن کامل